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GEOMAGNETIC PERTURBATIONS CAUSED BY A SPHERE MOVING
IN THE CONDUCTING LIQUID

V.V. Surkov,1,2 V.M. Sorokin,2∗ and
A.K.Yashchenko 2 UDC 537.613

We study the external magnetic-field perturbations caused by flows of a conducting incompressible
liquid which streamlines a dielectric sphere moving in it. An analytical solution of the problem
is obtained for the case of a potential flow of liquid and an arbitrary orientation of the external
magnetic field. Angular distribution of the magnetic and electric field perturbations, as well as
the dependence of their amplitudes on distance, are examined. The directions in which the mag-
netic and electric components of the perturbations are the maximum are determined. Temporal
dependences and the spectra of electromagnetic signals are analyzed for different parameters of
the problem. The results of analytical research are illustrated by numerical calculations.

1. INTRODUCTION

The motion of surface and underwater vessels in sea water can lead to small local perturbations
of the Earth’s geomagnetic field. One of the reasons for this phenomenon is the effect of the ship’s own
magnetic field, which can, for example, arise during its construction due to the magnetization of its hull or
ferromagnetic materials that are part of the ship [1]. Another possible reason is the generation of currents in
sea water due to its motion around the hull of the ship [2–4]. The origin of these currents is due to the action
of the magnetic force on electric charges in sea water. A similar effect of the geomagnetic field perturbation
occurs during wave motions of the sea surface (see, e. g., [5]), in particular, tsunami [6], during oscillation of
the Earth’s conducting layers in seismic waves, under the action of acoustic and internal gravity waves on
the ionospheric conducting layers, etc. [7].

The general nature of the geomagnetic disturbances caused by induction currents in sea water near
the ship depends significantly on the distribution of the mass-velocity field of the liquid flowing around
its hull. However, at far distances the magnetic perturbations can have a more universal character, and
therefore the solutions of the simplified model problems can be used for their study. In this paper, we find
an exact solution to the problem of the external magnetic field perturbations caused by a laminar flow of
a conducting incompressible fluid that flows around a solid dielectric sphere. Based on this solution, the
distribution of magnetic perturbations and their dependence on the distance to the sphere is estimated.

2. MOTION OF A SPHERE ALONG THE MAGNETIC FIELD

Consider a dielectric nonmagnetic sphere of radius R, which moves at a constant speed in the conduct-
ing homogeneous fluid located in a uniform magnetic field B0. We will study the magnetic field perturbations
b caused by the electrical currents generated in the flow of a liquid streamlining the sphere.
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We now pass to the reference system in which the sphere is at rest. In this reference system, the
distributions of the mass flow velocity V and of the magnetic b̄ and electric Ē perturbations are stationary,
i. e., are time independent. In addition, the magnetic perturbations are small compared with the unperturbed
field, b̄ � B0. Hereafter, for convenience, we omit an overbar in the expression for magnetic perturbations.
Then the Maxwell equations in this reference system take the form

rotb = μ0σ(E+V ×B0); rotE = 0; divb = 0,

where μ0 is the magnetic constant. Assuming that the conductance coefficient σ of the liquid is constant,
we take a curl from both sides of the first equation and, using the second and the third equations, obtain

rotrotb = −μ0σrot[V ×B](V ×B0). (1)

Assume that the flow of a liquid is laminar and the effect of its viscosity is negligible. The conducting
liquid is affected by a hydrodynamic pressure and a magnetic force with the bulk density j × B, where
j is the density of the electrical current. In what follows we will show that under the conditions of this
problem, the magnetic term in the Euler equation can be neglected as compared with the gradient of the
hydrodynamic pressure. Let us introduce the Cartesian coordinate system x, y, z with the z axis directed
along the velocity vector of the incident flow of liquid. Using the well-known Euler equation in the problem
of a sphere streamlined by an ideal incompressible liquid (see, e. g., [8]), we write an expression for the mass
flow velocity:

V =
R3

2r3
[3er(V0er)−V0]−V0. (2)

Here, r and er denote the absolute value and the unit

Fig. 1. The coordinate system used for calcula-
tion of the perturbation of the magnetic field by a
moving sphere.

vector of the radius vector which we draw from the sphere
center, respectively, and V0 is the velocity of the incident
flow of liquid at infinity. For solving the problem, it is
convenient to use a spherical coordinate system r, ϕ, θ
with the polar angle θ reckoned from the direction of the
vector V0, as is shown in Fig. 1.

First we assume that the induction vector of an
external magnetic field is parallel to the z axis (i. e.,. the
sphere velocity V0). Since the problem is axially symmet-
ric, all the quantities are independent of the azimuthal an-
gle ϕ. Substitute the velocity from relation (2) to Eq. (1).
Transforming the obtained equation, we write it in com-
ponents in the form

r2[T̂1br − 2br + T̂2(∂θbr − 2bθ)] = K(3 cos2 θ − 1),

r2[T̂1bθ + T̂2∂θbθ + 2∂θbr − sin−2 θbθ] = K sin(2θ), (3)

where we introduced the following designations:

∂r = ∂/∂r, ∂θ = ∂/∂θ, T̂1 = ∂r(r
2∂r), T̂2 = sin−1 θ∂θ(sin θ), K = 3μ0σV0B0R

3/2.

We write the equation divb = 0 in the form

r∂rbr + 2br + T̂2bθ = 0. (4)

The solution of Eqs. (3) and (4) for the magnetic-disturbance components can be sought in the
form of series expansions over associated Legendre functions Pm

n (cos θ). However, taking into account that
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inhomogeneities on the right-hand sides of these equations can be expressed in terms of P 1
2 = 3 sin θ cos θ and

P 0
2 = (3 cos2 θ − 1)/2, it can be assumed that bθ ∝ P 1

2 (cos θ) and br ∝ P 0
2 (cos θ). This angular dependence

of the magnetic-perturbation components permits one to seek a solution in the form

br = fr(r){3 cos2 θ − 1}, bθ = fθ(r) sin θ cos θ. (5)

Substituting relations (5) into Eqs. (3) and (4), we arrive at the following system of equations for the
desired functions fr and fθ:

r2f ′′
r + 2rf ′

r − 8fr − 2fθ = K/r2, r2f ′′
θ + 2rf ′

θ − 12fr − 6fθ = 2K/r2, rf ′
r + 2fr + fθ = 0, (6)

where the primes denote a derivative with respect to r. From system (6) we obtain

r4f ′′
r + 4r3f ′

r − 4r2fr = K. (7)

Let us find a general solution to Eq. (7) for the function fr. Then, substituting fr into the last equation of
system (6), we determine fθ. As a result, we obtain

fr = C1/r
4 + C2r −K/(6r2), fθ = 2C1/r

4 − 3C2r, (8)

where C1 and C2 are indefinite constants. Relations (8) give a general solution to the system of equations
(6). Taking into account that magnetic perturbations (8) should be finite at r → ∞, we find that C2 = 0.

Since the sphere is nonconducting and nonmagnetic, the region inside the sphere (r < R) is described
by Eqs. (3), in which one should put K = 0. Solving these equations in a similar way, we find that

fr = C3r + C4/r
4, fθ = 2C4/r

4 − 3C3r. (9)

From the condition for the finiteness of the solution at r = 0 it follows that C4 = 0. The constants C1 and
C3 can be found from the condition for the continuity of fr and fθ at the sphere boundary, i. e., by equating
solutions (8) and (9) at r = R. Substituting these solutions into Eq. (5), we obtain the final form of the
solution for r > R:

br = λB0
R2

4r2

(
1− 3R2

5r2

)
(1− 3 cos2 θ), bθ = λB0

3R4

10r4
sin θ cos θ, λ = μ0σV0R. (10)

Consider how the boundary conditions on the sphere surface affect the character of the magnetic
perturbations. Let the sphere be covered by a conducting shell, the conductivity of which is much greater
than the conductivity of the environment. In this case, it can be assumed that surface currents are generated
on the sphere, resulting in that the magnetic field inside the sphere vanishes. Then the tangent component
of magnetic perturbations on the sphere surface will undergo a jump, while the normal component should
be equal to zero. The boundary condition fr(R) = 0 permits one to find the indefinite constant C1:
C1 = KR2/6. The solution of the problem for this case has the form (r > R)

br = λB0
R2

4r2

(
1− R2

r2

)
(1− 3 cos2 θ), bθ = λB0

R4

2r4
sin θ cos θ. (11)

Comparison of solutions (10) and (11) for two considered cases shows that the angular and radial
dependences of magnetic perturbations are identical, and their amplitudes are close in magnitude. This
trend persists for other cases, as well. It can therefore be concluded that the behavior of the magnetic
perturbation (at least, at far distances) depends only weakly on the boundary conditions on the sphere
surface.
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3. MOTION OF THE SPHERE AT AN ARBITRARY ANGLE TO THE DIRECTION
OF THE MAGNETIC FIELD VECTOR

Let the sphere move in the direction perpendicular to the vector B0 of an external magnetic field.
We use, as before, a spherical coordinate system with the polar axis z passing through the sphere center in
parallel to the vector V0 and the axis x along the magnetic field vector B0. The solution of Eqs. (1) will be
sought in the form br = fr cosϕ, bθ = fθ cosϕ and bϕ = fϕ sinϕ, where ϕ is the azimuthal angle reckoned
from the direction of the x axis. Then Eqs. (1) take the form

(T̂1 + T̂2∂θ − sin−2 θ − 2)fr − 2T̂2fθ − 2fϕ sin
−1 θ = 3K cos θ sin θ/r2;

(T̂1 + T̂2∂θ − 2 sin−2 θ)fθ + 2∂θfr − 2fϕ cos θ sin
−2 θ = −K cos 2θ/r2;

(T̂1 + T̂2∂θ − 2 sin−2 θ)fϕ − 2fr sin
−1 θ − 2fθ cos θ sin

−2 θ = K cos θ/r2. (12)

The equation divb = 0 takes the form

r∂rfr + 2fr + T̂2fθ + fϕ sin
−1 θ = 0. (13)

Dropping the expression T̂2fθ + fϕ sin
−1 θ in Eqs. (12) and (13), we obtain an equation with respect

to fr. We seek the solution of this equation in the form fr = f1(r). As a result, we obtain

r4f ′′
1 + 4r3f ′

1 − 4r2f1 = 3K. (14)

Since the right-hand sides of Eqs. (12) are expressed through associated Legendre functions, which depend
on the argument cos θ, it is expedient to seek the solution of these equations in the form fθ = a0(r) +
a2(r)P

0
2 (cos θ), fϕ = a1(r)P

0
1 (cos θ), where a0, a1, and a2 are unknown functions. Substituting these

expressions into Eqs. (12) and (13) leads to the following system of equations:

r2a′′0 + 2ra′0 + 2a1 + 3a2 − 2f1/3 = K/(3r2), r2a′′1 + 2ra′1 − 2a1 + 3a2 − 2f1 = K/r2;

r2a′′2 + 2ra′2 − 6a2 + 8f1/3 = −4K/(3r2), rf ′
1 + 2f1 − 9a2/2 = 0, a0 + a1 + a2 = 0. (15)

For a dielectric sphere, the normal component of the current density vector on the sphere surface
vanishes. This condition is equivalent to the fact that the radial component of the magnetic perturbation
curl is equal to zero at r = R, i. e.,

∂θ(fϕ sin θ) + fθ = 0. (16)

At the boundary of a dielectric sphere, all the components of the magnetic field perturbations should
be continuous. The solution of Eqs. (14) and (15), which is bounded at zero and at infinity is sought
with condition (16). From the linearity of the initial Maxwell equations it follows that with an arbitrary
orientation of the sphere velocity vector with respect to the direction of an external magnetic field, the
general solution of the problem is the sum of solutions obtained for the cases of longitudinal and transverse
directions of the sphere motion. Denoting the projections of an external magnetic field on the x and z axes
as B0x = B0 sin β and B0z = B0 cos β, respectively (here, β is the angle between the vectors V0 and B0), we
write expressions for the components of the magnetic field perturbation accompanying the sphere motion
at r > R:

br = λB0
R2

8r2

(
1− 3R2

5r2

)
[2 cos(β) (1 − 3 cos2 θ)− 3 sin(β) cos(ϕ) sin(2θ)];

bθ = λB0
3R4

20r4
[cos(β) sin(2θ)− sin(β) cos(ϕ) cos(2θ)], bϕ = λB0

3R4

20r4
sin(β) sin(ϕ) cos(θ). (17)

Analysis of the obtained expressions shows that for far distances (r � R) the radial component br be-
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comes much greater than the transverse components bθ and bϕ. An asymptotic formula for the magnetic
perturbations br is given by

br ≈ λB0
R2

8r2
[2 cos(β) (1 − 3 cos2 θ)− 3 sin(β) cos(ϕ) sin(2θ)].

Thus, the magnetic perturbation vector at far distances r decreases as r−2 and is directed to the moving
sphere or oppositely. Analysis of expression (17) shows that br achieves the maximum values in the y = 0
plane (ϕ = 0) at an angle θmax = (1/2)arctan(B0x/B0z) = β/2. Note that the magnetic dipole approxima-
tion, in which the perturbation amplitude depends on the distance as r−3, is not applicable to this problem.
This is due to the fact that in this problem the perturbation source, i. e., the velocity field in a liquid, is
distributed in space, and therefore cannot be replaced by a point magnetic dipole. If the sphere center is at
the origin of coordinates at the instant t = 0, then the dependence of the variables r and θ on the time in
Eqs. (17) has the form r = [x2 + y2 + (z − V0t)

2]1/2 and cos θ = (z − V0t)/r.
Passing to the laboratory reference frame, with respect to which the sphere moves with the velocity

V0, requires transformations of the electromagnetic field. In the nonrelativistic case (V0 � c), the formulas
for magnetic perturbations (17) retain their form, but the coordinates r and θ depend on the time, and the
electric field transforms in the following way: E = Ē+V0 ×B0. The components of the electric field Ē in
the sphere-related coordinate system can be found using the Maxwell equation divb̄ = μ0σ(Ē +V × B0).
The components of the electric field E in the laboratory reference frame for r > R have the form

Er = V0B0
R3

2r3
sin(β) sin(ϕ) sin(θ), Eθ = −V0B0

R3

4r3
sin(β) sin(ϕ) cos(θ);

Eϕ = −V0B0
R3

4r3
sin(β) cos(ϕ). (18)

In vector form, Eqs. (18) can be written as

E = −∇Φ, Φ =
r(V0 ×B0)R

3

4r3
.

The electric field in the laboratory reference frame is of potential nature. The potential Φ of this field outside
the sphere corresponds to the field of an effective dipole with the electric moment d = πε0(V0×B0)R

3, where
ε0 is the electric constant. It follows that the electric perturbations can achieve the maximum values in the
direction specified by the vector V0×B0, i. e., along the y axis. The electric field components are comparable
in amplitude and decrease with the distance as r−3. However, the amplitude of these perturbations, which is
determined by the effective dipole moment d, depends on the angle between B0 and V0 and, in particular,
can vanish if these vectors are parallel.

4. DISCUSSION OF THE RESULTS

Figures 2 and 3 show the spatial distribution of the dimensionless radial perturbation of the magnetic
field br/(λB0) in the x, z plane, which is calculated by the first formula in Eqs. (17) using transformation of
the coordinates r =

√
x2 + z2; θ = arctan(x/z). For the parameters σ = 5 S/m, V0 = 5 m/s, B0 = 5·10−5 T,

and R = 50 m the obtained quantity λB0 is equal to 75 nT. In this case, perturbation of the magnetic field
near the sphere can achieve 10–15 nT. As is seen in Fig. 3, the polar diagrams of the distribution br/(λB0)
in the y = 0 plane have four lobes, whose location depends on the angle β between the vectors V0 and
B0. The largest values of the magnetic perturbations are achieved in directions which make angles β/2 and
π + β/2 with the vector V0. Two more local maxima are formed in the orthogonal directions.

The dependences of the radial component of the magnetic field perturbation on the distance for
different angles β between the direction of the liquid flow and the magnetic field vector are presented in
Fig. 4. Curves 1–4 are plotted for the polar angles θ = 0◦, 30◦, 60◦, and 90◦, respectively. At a dimensionless
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distance r/R = 5, the values br decrease by 1–2 orders of

Fig. 2. Spatial distribution of the radial compo-
nent of the dimensionless magnetic perturbation
br/(λB0) generated by a moving sphere in the
y = 0 plane. The velocity vector V0 makes an
angle β = 60◦ with the vector B0.

magnitude since this dependence is mainly determined by
the relation br ∝ r−2. The different signs of the radial-
perturbation projections at different angles θ are due to
the property of closeness of the magnetic induction lines.

These results were obtained under the assumption
of a small magnetic force acting on the conducting liquid,
i. e., under the condition |j × B0| � |∇P |. The liquid
pressure gradient near the sphere surface |∇P | ≈ ρV 2

0 /R,
where ρ ≈ 103 kg/m3 is the density of the liquid. Sub-
stituting the above-mentioned numerical values of the pa-
rameters into these relations, we obtain the following con-
dition: j � ρV 2

0 /(RB0) = 107 A/m2, which is well ful-
filled since the characteristic value of the current density
in this problem j = σE ≈ 3 · 10−5 A/m2.

In the laboratory coordinate system, the magnetic field perturbation at the measurement point
depends on the time, since the coordinates are time dependent (see Eqs. (17)). For the dimensionless
radial component of the magnetic perturbation at the x axis (y = z = 0) we have

br(ξ, τ) =
λB0

4(ξ2 + τ2)

[
1− 3

5(ξ2 + τ2)

] [
cos(β)

(
1− 3τ2

ξ2 + τ2

)
− 3 sin(β)

ξτ

ξ2 + τ2

]
, (19)

where ξ = x/R, τ = t/t0, and t0 = R/V0. Figure 5 shows the dependences of br/(λB0) on the dimensionless

Fig. 3. Polar diagrams of the radial-component distribution of a dimensionless magnetic perturbation br/(λB0)
in the y = 0 plane for different inclination angles of the unperturbed magnetic field B0 with respect to the
direction of the velocity V0 of the incident flow of liquid: β = 0◦ (a), 30◦ (b), 60◦ (c), and 90◦ (d).
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Fig. 4. Dimensionless dependences of the radial component of magnetic perturbation br/(λB0) on the di-
mensionless distance r/R for different inclination angles β of the magnetic field with respect to the velocity
direction of the incident flow of liquid. Panel a corresponds to the angle β = 0◦, b, to 30◦, c, to 60◦, and d,
to 90◦. Curves 1–4 correspond to the polar angles θ = 0◦, 30◦, 60◦, and 90◦, respectively.

Fig. 5. Radial component of a dimensionless magnetic perturbation br/(λB0) at the x axis in the laboratory
coordinate system as a function of the dimensionless time t/t0. On panel a, the coordinate x = R and the
angle β = 0◦ (curve 1) and 90◦ (curve 2). On panel b, the angle β = 45◦ and the coordinate x = R (curve
1), 2R (curve 2), and 3R (curve 3).

time t/t0 at different distances from the sphere center and for different angles β between the vectors V0 and
B0. The adopted values of the parameters yield t0 = 10 s. The curves in Fig. 5a were plotted for x = R and
β = 0◦ (curves 1) and 90◦ (curve 2). The curves in Fig. 5b were plotted for β = 45◦ and x = R, 2R, and 3R
(curves 1–3, respectively). It is seen in Fig. 5 that the dependence of the magnetic perturbation on the time
is of alternating nature, and the signal may contain 2 or 3 peaks decreasing with the distance.

Equation (19) yields a frequency spectrum of the signal observed at the x axis. Performing a Fourier

558



transform

b̃r(ξ, ω) =

+∞∫
−∞

br(ξ, τ) exp(iωτ) dτ, (20)

at large distances r � R we find that

b̃r(ξ, ω) = (πλB0/8) exp(−|ω| t0ξ)
{
3 |ω| t0 exp[iβsgn(ω)]− 1

ξ
cos β

}
. (21)

Analysis of Eq. (21) shows that the frequency de-

Fig. 6. The spectrum b̄r(x, ω)/(λB0) of the tem-
poral dependence of the radial component of a di-
mensionless magnetic perturbation at the x axis
in the laboratory coordinate system at the point
x = R for the angles β = 0◦, 30◦, 60◦, and 90◦

(curves 1–4, respectively).

pendence of the modulus of the magnetic-perturbation
spectrum is nonmonotonic, and the extremum arises at
the frequencies ω∓ = [3+2 cos β∓(9+4 cos2 β)1/2]/(6ξt0),
where the minus sign corresponds to the minimum and
the plus sign, to the maximum of the spectrum. Figure 6
shows the moduli of the magnetic-perturbation spectrum
(21) as functions of the dimensionless frequency ωt0 for
the point with the coordinate x = R, which were calcu-
lated for different angles β. With the parameter values
mentioned above, the maximum of the spectrum corre-
sponds to the frequencies ω = 0.1–0.2 Hz. It is seen in
Fig. 6 that the frequencies of the maximum ω+ and the
minimum ω− decrease with increasing angle β in accor-
dance with the formula given above.

Electric field (18) outside the sphere is distributed
according to the dipole law with an effective dipole mo-
ment of the order of 7·10−9 C·m (for the above-mentioned
parameters). The maximum of the field at the distance
r = 500 m is estimated as 0.5 V/m. In the laboratory
reference frame, the temporal dependence of an electric signal, as well as a magnetic one, is nonmonotonic,
and the maximum of the signal spectrum lies in the same frequency range of the order of 0.1–0.2 Hz.

5. CONCLUSIONS

The obtained analytical solution of the problem makes it possible to estimate the magnetic pertur-
bations caused by a moving solid dielectric body in the conducting liquid. If the body moves at a constant
speed, and the flow of liquid is potential, then the magnetic perturbation amplitude appears to be propor-
tional to the volume and speed of motion of the body. In an unbounded liquid, the magnetic perturbations
decrease with the distance r as r−2 and the electric perturbations, as r−3. Distribution of the electric field
outside the sphere obeys the dipole law with an effective dipole moment, which is also proportional to the
volume and speed of motion of the sphere. At far distances, the radial component Br directed to or from
the moving body dominates in the magnetic perturbations. The analysis has shown that the largest value
of Br is achieved in the plane in which the vectors of the unperturbed magnetic field B0 and the sphere
velocity V0 lie. The polar diagram of the radial magnetic perturbation in this plane has the form of four
orthogonal lobes, whose location depends on the angle β between the vectors B0 and V0. The magnetic
perturbations are the maximum at angles β/2 and π+ β/2 to the vector V0. Electric perturbations are the
maximum in the direction perpendicular to the plane of the vectors B0 and V0. In the laboratory reference
frame, the temporal dependences of the electric and magnetic signals are nonmonotonic. With the chosen
parameters, the maxima of the spectra lie in the range of tenths of a hertz. Obviously, these conclusions
remain valid for other boundary conditions for an electromagnetic field on the surface of a moving sphere,
in particular, for a sphere made of conducting magnetic materials.
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